THE PROBLEM OF THE ELECTRIC FIELD OF AN
ELECTRODE WITH A PRE-ELECTRODE POTENTIAL
DROP IN A MEDIUM WITH TENSOR CONDUCTIVITY

Yu., P. Emets

We investigate the nonlinear current distribution in an electrode of finite dimensions with
a pre-electrode layer in which the potential locally depends on the current density. The
electrode is in contact with a medium of anisotropic conductivity caused by the Hall effect.
The problem is reduced to the solution of a nonlinear integrodifferential equation, It is
shown that the structure of the field is determined by the Hall parameter w7 and the form
of the volt-ampere characteristic in the pre~electrode layer.

From theoretical considerations based on idealized assumptions about the properties of conductors,
dielectrics, and the media surrounding them, the current distribution in electrodes of finite dimensions be-
comes significantly nonuniform with singularities at the end points. This nonuniformity in the current, as
already remarked on several occasions, is amplified in media in which the Hall effect appears. At the
present time all the fundamental relationships have been obtained in the approximate theory of three-dimen-
sional fields in the flows of ionized gases and in semiconductors. The consequences which have been de-
duced from theory have been confirmed by experimental verification [1, 21.

However, in specific cases, in comparing theoretical calculations with experimental results, there
are divergences indicating limitations in the application of the approximate theory [3]. It may be remarked
that there are more important physical phenomena which are not accounted for in the original equations
and not reflected in the boundary conditions of linear theory problems, but which, evidently have a signifi-
cant effect on the formation of the field. These phenomena include the nonlinear conductivity of the medium
in strong electric fields, which is observed, for example, in an unbalanced plasma and in semiconductors
with "hot electrodes," and also contact phenomena at the boundary of heterogeneous media. To take ac-
count of these new factors, defining the nonlinear properties of fields, as a rule makes the solution of the
boundary value problems extremely complicated. Nevertheless, it is necessary for an analysis of the proc~
esses.

1. Within the framework of the phenomenological theory of a continuous medium we consider the ef-
fect of a potential drop in the pre~-electrode layer on the current distribution in an electrode adjacent to the
flow of an anisotropic conducting plasma,

We use the theoretical description of the phenomena in the pre-electrode layer proposed by Lyubimov
and Vatazhin and used by them to compute, in linear approximation, the two-dimensional fields in magneto-
gasdynamic channels with scalar conducting flows [4, 5]. In this theory two fundamental assumptions are
made:

1) The thickness of the layer is small by comparison with a typical length in the problem.
2) The potential drop in the layer, ¢4 , locally depends on the normal component of the current.

The form of the function ¢, is defined by the physicochemical properties of the plasma, the material
of the electrode, and is established by theoretical calculations or taken from experiments. In the large the
pre-electrode processes relate to the surface of the electrode and are taken into account in the effective
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boundary conditions ¢ = ¢ + ¢, (j,), where @, is the actual potential of the electrode. In other words,
the normal component of the current density vector at the surface matches some additional potential due

to the purely local value of the field and the predetermined boundary properties of the plasma and the elec-
trode surface.

We assume that the electrode of finite dimensions ab =21, ~l = x =] for y = 0 (the remaining part
of the x axis is a dielectric) is in contact with a two-dimensional flow of an incompressible anisotropic
conducting medium v [u(x, y), vi(x, ), 0] filling the lower half-plane. The external magnetic field H(0,0, H,)
is assumed to be everywhere homogeneous and to considerably exceed the intrinsic field of the currents to
be determined, the effect of the latter field being ignored.

The fundamental equations of the theory of the electric ficld in this case
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have to be solved with the boundary conditions
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In the above we have used commonly accepted notation,

In the boundary conditions we have assumed that ¢, (jy) and the total current I passing through the
electrode are given. Other electrodes through which the current is closed are assumed to be infinitely
distant, The components of the electrical conductivity tensor oy, oxy in (1.1) depend only on the mag-
netic field,

In (1.1} we can introduce the complex current which can be put in the form of a Cauchy type integral
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This satisfies the boundary conditions (1.2) and, for large |z|, has the expansion
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We differentiate the first boundary condition of (1.2) with respect to x
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and write (1.5), using the first two equations of (1.1), as
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Here the electrical conductivity o(H) and the Hall parameter 8(H) in the magnetic field are defined
by the equations
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If we substitute the boundary value of the integral (1.3) in ab for jyx(x) in (1.6) we obtain a nonlinear
singular integrodifferential equation for the normal component of the current density vector at the electrode

3
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where 8 and o are constant for fixed H. The pre-electrode phenomena in (1.8) correspond to the third
term with coefficient F(jy) = dox* /djy, the form of which specifies the volt-ampere characteristic ¢« (jy) .

2. We have not been able to construct analytic solutions for Eq. (1.8). However, the properties of
the fields described by it can be established by analyzing particular solutions which are obtained by nu-
merical methods.

First we note the case when the potential in the pre-electrode layer is independent of the current,
i.e., when¢, = const, F = 0. Then Eq. (1.8) becomes a linear singular integral equation with a closed con-
tour of integration and its solution, obtained by solving the appropriate Riemann boundary value problem,
has the form [6, 7]
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i.e., is the familiar solution of the problem of the current distribution in an ideal electrode when the elec-
trical conductivity of the surrounding medium is anisotropic,
Turning to the numerical solution of Eq. (1.7), we integrate it once
j
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and assume that the volt-ampere characteristic is given by the function ¢ x= a iy + b, where a and b are
constants (F = a)., We can reduce Eq. (2.2) to a system of algebraic equations by the method of finite dif-
ferences, which we can write in nondimensional form (j° = iyt /1, x% = x/1; the superscripts are omitted
from the equations which follow)
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The results of computations on a computer for three values of the
U } U Hall parameter g(H) = 0, 1, 3 and four values of the nondimensional
( 0 parameter ¥ = ao(H) =0,0,1, 1, 10 (¢ > 0) are given in Figs, 1, 2, and

3. It follows from the form of the curves that there is a common prop-~
Fig. 4 erty for all values of g8 —the distribution of the normal component of the
current density along the length of the electrode flattens out as y in-
creases., This is explained as follows. At points where the current
% / gradient is nonzero (djy/ dx # 0), large values of jy in the pre-electrode
layer correspond to large values of the potential ¢ ., which limits the in-
crease in jy, since we have assumed that the volt-ampere characteristic
AN increases. As a result of the compatibility between ¢, and iy the cur-

; \r/ rent distribution at the electrode is reorganized, jy decreases when ¢ *
T 'T— ¢ is large and, conversely, increases where ¢4 is small; the inhomogeneity
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in jy(x) decreases and in general vanishes as vy (djy/dx-a»()). This
I : A property of the field occurs to a lesser extent as 8 increases and o de-
n creases, the latter because ¥ = ao (a = const).

Fig, 5 The current distribution is quite different for falling volt~ampere
characteristic (¢ < 0), Here increase in iy leads to a reduction in ¢,

and the nonuniformity of current flow at the electrode must increase, However, it is difficult to predict the
form of the function jy(x). In this case the solution of Egs, (2.3) depends on the relations between §,a, and
o and is sensitive to changes in them, small variations in the coefficients of Eq. (1.8) leading to large
changes in the current density which can become of variable sign at the electrode. In this sense we can
discuss the instability of the distribution of jy(x). As an example, Fig. 4 shows the results of solving the
equation for three values of g(H) = 0, 1, 3 and v = —0,1, The graphs show that because of the change in the
sign of jy(x) there are current vortices near the electrode, the form of which strongly depends on the size
of the external magnetic field or, more precisely, on the value of the Hall parameter g(H),

If the volt-ampere characteristic cp*(jy) has increasing and decreasing parts (for example, has N-
shaped form; Fig. 5) the current distribution has properties characteristic of the two cases discussed
above for ¢ >0 and a < 0.

It is possible that the occurrence of falling parts in the volt-~ampere characteristic of the pre-elec~
trode layer is associated with the formation of arcs and patches which have been observed experimentally
at the electrode, and also with the appearance of current and voltage fluctuations in the load,

LITERATURE CITED

1. 1. F. Louis, I. Lothrop, and T. R. Brogan, "Fluid dynamic studies with a magnetohydrodynamic
generator," Phys. Fluids, 7, No. 3, pp. 362-374 (1964),

2. P. I, Baranskii and Yu, P, Emets, "The electrical field in a circular semiconducting flat plate in a
magnetic field," Zh, Prikl, Mekhan, i Tekh, Fiz., No. 5, 64-72 (19686).

3. G. Brederlow and H. Zinko, "Measurement of the potential distribution, elevation of electron tem-
perature, and voltage—current characteristics of an alkali-seeded rare-gas Faraday-type MHD
generator,” Electricity from MHD, Proc. Symposium, Warsaw, 1968, Vol. 1, Vienna (1968}, pp. 409~
417,

17



18

A. B, Vatazhin and G. A, Lyubimov, "The effect of pre-electrode layers on the characteristics of an
MHD generator," in: Problems in the Hydrodynamics and Mechanics of a Continuous Medium [in
Russian], Nauka, Moscow (1969), pp. 93-102.

A, B, Vatazhin, "Electrical fields in magnetohydrodynamic channels when there is a pre~electrode
potential drop," Prikl. Matem. i Mekhan., 30, No. 3, 441-450 (1966),

N. 1. Muskhelishvili, Singular Integral Equations [in Russian], Fizmatgiz, Moscow (1962),

Yu. P. Emets, "The current distribution at permeable electrodes when the Hall effect occurs in the
flow of an electrically conducting medium," Zh, Prikl. Mekhan. i Tekh. Fiz., No. 3 (1966).



